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Incommensurate-Commensurate Phase Transitions 
in an Anisotropic Antiferromagnetic Model on 
Triangular Lattice 
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An anisotropic antiferromagnetic model on a triangular lattice with competing 
interactions is investigated by the cluster transfer-matrix method. A phase 
diagram with ferrimagnetic, incommensurate, and disordered phases is found. 
Three order parameters are introduced. At commensurate-incommensurate and 
incommensurate-disorder phase transition lines two of them change in con- 
tinuous and one in discontinuous way. 
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Kosterlitz-Thouless phase; cluster transfer-matrix method. 

1. INTRODUCTION 

The t r iangular  Ising model  with ant i ferromagnet ic  neares t -neighbor  and 
ferromagnetic  next -neares t -neighbor  interact ions has a t t racted considerable  
interest in the last two decades. It was used to describe physical  adsorp t ion  
of gases on g raph i te l ' l  and as a simple example of a model  with a rich phase 
d iagram with critical lines, tricritical point ,  and Kos ter l i t z -Thouless  critical 
phase. Campbel l  and Schick ~11 used a two-site mean-field approx imat ion  
(Bethe approx imat ion) .  Their  results differ substant ia l ly  from later  calcula- 
tions of the phase d iagram by the Monte  Car lo  method,  ~2"3~ symmetry  con- 
siderat ions,  14~ group  theory analysis, .5~ and the t ransfer-matr ix method.  16J 
All these works,  using finite-size scaling arguments ,  confirmed a x /~  x x /~  
ordered phase for small magnet ic  field with a line of a second- and first- 
order  phase t ransi t ion to d isordered state and a tricritical point  between 
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them. The second-order phase transition belongs to the universality class of 
the three-state Potts model. Another continuous critical line was found at 
zero field and was concluded to belong to the universality class of the two- 
dimensional X Y  model with hexagonal anisotropy. The critical exponents 
are nonuniversal and temperature dependent. The phase is clearly seen 
when the finite-size behavior of the site-site correlation functions is 
analyzed, but it was not confirmed by the phenomenological renormaliza- 
tion method. [This phase we shall denote as a Kosterlitz-Thouless (KT) 
phase.] 

Recently, Kitatani and Oguchi Ivj investigated a simplified model where 
an anisotropy was introduced by omitting one of the three next-nearest- 
neighbor ferromagnetic interactions. It was shown that the phase diagram 
of the model practically did not change. The existence of the KT phase 
was concluded only from the scaling behavior of the site-site correlation 
function in this case, as well. 

The anisotropic model was studied by the transfer-matrix method ~7~ 
for various strip widths and by Monte Carlo calculations cg~ using a coarse- 
graining procedure. From these calculations, it seems very probable that 
there exist two temperatures T,.~ and T,.2 where the Kosterlitz-Thouless 
phase transitions take place and the system at all temperatures between 
them is in a critical state. The existence of two conspicuous temperatures 
is seen from two peaks in the specific heat as well. 

We use the cluster transfer-matrix me thod- -a  combination of the 
transfer-matrix and the mean-field approach- - to  confirm the existence of a 
new phase between the ordered and the disordered phases and to show that 
the predicted KT phase is in fact an incommensurate structure. 

2. M O D E L  A N D  M E T H O D  

We shall calculate the free energy and the local magnetization of a 
system of __ 1 spins on a triangular lattice interacting by nearest-neighbor 
(nn) and next-nearest-neighbor (nnn) interactions by the cluster-matrix 
method developed by one of usJ 9 L~) All the nn interactions of the model 
are equal and antiferromagnetic. One of the ferromagnetic nnn interactions 
is missing. Let us choose in our triangular two-dimensional lattice zigzag 
rows in the direction of the missing next-nearest-neighbor interaction (see 
Fig. 1). As there are no competing interactions in this direction, we expect 
the presence of only simple commensurate structures along the rows. Anti- 
cipating the size of the clusters in the further approximations, we represent 
the Hamiltonian of the model as a sum of energies of 2 x 3 clusters. 

There are two types of 2 x 3 clusters with a two-site base on ascending 
and descending parts of the zigzag row, respectively. Both clusters can be 
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Fig. 1. Anisotropic.model on a triangular lattice with two competing interactions: J~, nn 
interactions; J2, nnn interactions. The two six-site clusters are shown by the thick lines and 
the zigzag row by the thin line. 

t ransformed into each o ther  by mir ror  reflection with respect to the vertical 
axis. 

Denot ing  the neares t -ne ighbor  interact ions as J l  and the next-nearest  
ones as J2, we have for the energy of the cluster with the ascending base 
having the left bo t tom corner  at the i th  row and the j t h  column 

~i+ 2,j(Ti+ 2,j+ I .~_ tTi.j6i.j+ I] 
+ 3 

The expression for the energy of the other  cluster is found by interchanging 
i ~ i + 1 in (1). The terms in (1) are divided by the number  of appearances  
of the par t icu lar  bond in different clusters. 

Then the Hami i ton ian  of our  an iso t ropic  ant i ferromagnet ic  model  
with nn and nnn interact ions is simply 

H=~.Gi,, 
i,j 

If in calculat ion of the par t i t ion  function 

Z =  ~ exp[ /~H(ai )  ] 
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the summation is performed consecutively row by row, the problem is 
equivalent to evaluation of auxiliary functions ~ and numbers 2~ 

~ ~,(S~,S,+,) T~(S,,S,+,,S~+2)=2~W,+,(S~+~,S~+2) (2) 
Si  

starting from an appropriate function 7",(S~,$2)J 9~ (Si denotes a 
row variable S i = {  .... ai.j,a~.j+l,ai.j+2,...} and T~(Sg, Si+I,Si+2)= 
exp[/~ Z~=_ +~-'_ Oi.j].) 

As S~ consists of an infinite number of site variables ~r~,j 
( j = - o o  ..... + oo), all the values of the auxiliary functions ~u~(S~) cannot 
be generally found. 

Assuming an asymptotic behavior of correlation functions already at 
distances exceeding the cluster size, we can factorize ~u~(S~, Si+~) in the 
same way as the function T~(S~, St+ ~, S;+2) = I-If2 _~ exp(G~.j), i.e., 

 iIsi. [I (3) 
j =  - z o  

where S,k..j denotes a set of site variables of a finite two-row cluster 

k -- ( I[yi+ I ,J '" (Ti+ l , j + k  I 
S i ' j - -  \ f f i . j  ' ' '  f f i . j+k  / 

The order of the approximation is given by the size of the cluster. 
Further, we put k =  1, i.e., W~.j(s].j) is defined on a four-site cluster and 
possesses 16 values. 

Substituting (3) into (2), we obtain a relation between known func- 
tions ~u,.j found in the preceding iteration step and the functions ~u,.+ l.j- 
Unfortunately, the number of equations (2) is much higher than the 
number of unknown values of the functions W~+ t.j. To reduce it, we sum 
over all sites of the rows i +  1, i + 2  except the sites in the columns 

j .k  j ..... j + k .  (Let us denote this infinite set of sites as M~+~.) Then the 
number of equations is equal to the number of values of the unknown 
functions. We have to find the values of W~+,.j from the equation 

E E H T,(S,. S,+,, s,+2) 
M','{, s, / . . . .  

E fi 
I.k I= M i+l 

( 4 )  

k Let us denote the left-hand side of (4) by Li+ ~.j. The functions ~'li, j and T, 
k are known and evaluation of Li+ ~,/can be performed again by the tech- 
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j,k nique of auxiliary functions. Now, because M~+~ is one-dimensional, no 
further approximation is necessary. As we assume the existence of only 
commensurate structures in the row direction, in the process of iteration, 
the auxiliary functions will converge to a finite number of their exact 
values. It is easily seen I~l that ~u+ ~.J is given in terms of L*~+ j.j as 

vi+, . , {g+, . , )  = Z L,*+ ,.,/s,.*+ ,.,) 
{ t/ri + I . l .  O~t + 2. i} 

(5) 

The solution (5) is not unambiguous. It is possible to insert a product 
Uj U 7 between each two terms 7ui.i(s~i) ~u.j+ ~ �9 t l(si.~+l) in (3), where U/ 
is an arbitrary function of s~.j+k-~ J. 

There is a direct relation between the structure of the system for 
different values of interaction constants and the space dependence of the 
auxiliary functions ~ . j .  In the paramagnetic phase ~ , j  does not depend 
on i, in the ferrimagnetic phase ~ui. j is a periodic function of i with the 
period of three lattice constants, and in the incommensurate phase its 
period is a continuous function of interaction constants. 

For our model the auxiliary function ~ . j  is always j-dependent, 
because we have two kinds of the functions Ti.j--different for odd and 
even j. For ferrimagnetic and incommensurate structures the periodicity of 
~i, j in j is always commensurate and equal to 6. 

The free energy of the system is proportional to log 1-I )-v The normal- 
ization constant 2~ is, from (4), equal to Z L~+ ~.j, because Z 1-[ ~ +  ~.j= 1. 
Using the technique of auxiliary functions, we can again obtain ~ L~+ t.j 
as a product of normalization constants. This result is exact because the 
summation is one-dimensional. 

Equation (5) represents a nonlinear mapping of auxiliary functions 
~u.; on ~g+ L j- A nonlinear approach to the description of incommensurate 
structures was previously used by Jensen and Bak. 1~2~ In distinction to our 
method, they mapped quantities with direct physical meaning--the site 
magnetizations. The mapping formulas were derived from MFA equations. 
The change of the subjects of mapping to unphysical quantities in our 
approach leads to stable fixed orbits, which, together with possibility to 
increase straightforwardly the order of the approximation, enables us to 
perform the mapping in high-dimensional parameter space (16 and 64, in 
the present calcu!ations). 

From the knowledge of the functions ~u.j, it is possible to find the site 
magnetizations as well. We have 

( a ; . ,>=  E l-] ~;.j(s*;.j)a,.,~;..j(s*;j) (6) 
S,,S,+I i 
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The functions ~ . j  and ~'i..j are results of iteration (5) in opposite 
directions from opposite lattice boundaries, where i and i' are distances 
from them. If (a i . t )  is given by (6), then 

E 
$1+1.S*+2 J 

The ferrimagnetic phase is three times degenerate; the lattice structure 
can appear in three equivalent positions. The actual position of the struc- 
ture is given by the boundary conditions. If the boundary conditions at 
opposite edges of the lattice are incompatible with each other, i.e., they give 
rise to two structures shifted by a lattice vector with respect to each other, 
the expression 

F = log ~ 1-I ~,. j 7",.(S, S, + , .  S, +2) H ~," - 2., (7) 
St. SI+I,S~+ 2 j k 

is the free energy of the interface between these two phases. 
The summation in (7) is performed over the three rows (a period of 

the structure) and can be done exactly. For longer periods the approximate 
summation scheme (4) has to be used. The choice of i' in (6) is given by 
the requirement of minimum of the interface free energy (7). In the incom- 
mensurate structures the period cannot be expressed as a multiple of the 
lattice constant and the interface free energy can be evaluated only 
approximately. 

3. RESULTS A N D  D I S C U S S I O N  

The calculations have shown that the anisotropy antiferromagnetic 
model with competing nn and nnn interactions on a triangular lattice can 
be found in one of the phases: ferrimagnetic, paramagnetic, and the incom- 
mensurate one lying between them. 

The phase diagram of the model is shown in Fig. 2. For zero nnn 
interactions due to the infinite degeneracy of the ground state, the ordered 
phases are absent. The ferrimagnetic structure consists of three ferro- 
magnetically ordered sublattices; the magnetization of one of them is 
opposite to the magnetizations of the other two sublattices. The total 
magnetization is nonzero and its sign is the sign of the magnetization of the 
two sublattices. The phase diagram was calculated in the four-site-cluster 
approximation (k = 1 ). As the phase transition lines changed only slightly 
for a higher approximation with k = 2 (dashed line), all further results are 
presented in the lower approximation. 

The incommensurate phase can be identified with the KT phase of 
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Fig. 2. Phase diagram of the model in two approximations. Solid line, width of the cluster 
k= 1; dashed line, k=2.  The estimates of the phase transition points at J,_/J~=0.5 by 
Miyashita et aL ~s~ are shown by the thick bars. 

Myash i t a  et al. ~8~ The t empera tu re  region where our  i n c o m m e n s u r a t e  phase 
exists is a little larger t han  that  of the K T  phase in that  paper.  ~81 At low 

tempera tures  it consists  of c o m m e n s u r a t e  v / 3  x x / ~  d o m a i n s  with d o m a i n  
walls be tween them. Each two ne ighbor ing  d o m a i n s  differ by the sign of 
their magne t i za t ions  a n d  the nex t -nea re s t -ne ighbor ing  d o m a i n s  are shifted 
by one  lattice c o n s t a n t  with respect to each o ther  (Fig. 3). A detail  of the 
d o m a i n  wall is shown  in Fig. 4. 

- 1  

- ,  ..- -.. ..- -.. ..- 
- o 

>4 :>-<: 

0 

�9 . �9 

/ " . 

 4'oo 28bo 
n u m b e r  of rows 

Fig. 3. Site magnetization m= ( a )  as a function of the row number at T/J~= 1.266, 
J,/J~ = 0.5. 
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Fig. 4. Detail of the domain wall from Fig. 4. 

The spin-spin correlation function decreases exponentially in our 
approach. The method does not take into account fluctuations of the wall 
distance at scales exceeding the cluster size. They are responsible for a 
power-law decrease of the correlation functions with distance in the KT 
phase.(,3 ,7~ Our method treats also dislocations of the walls only partially. 
Coppersmith et  al. (~8) have shown that an incommensurate structure near 
a commensurate structure with periodicity p is stable against formation of 
free dislocations if the inequality p2 /8  > 1 is satisfied. In our model p = 3. 

Let us introduce three order parameters for the description of the 
incommensurate phase: total magnetization x o =  l / N ~ i  <ai.j>, inverse of 
the period of the incommensurate structure x, = 1/2, and local total 
magnetization x~= [ 3 / N Z k  ~ , t2  _ (~Z.J, <ai.j>)-] (the second sum in x2 is 
over a triangular plaquette and the first one over all the plaquettes in the 
lattice). As shown in Fig. 5, for low temperatures the width of the domains 
tends to infinity and its inverse--the order parameter x , - -cont inuously  
decreases to its value in the ~ x ~/3 structure, that is, equal to zero. The 
temperature dependence of x, near Tj may be fitted by x, ~ ( T - 1 . 2 5 6 )  ~, 
where ct_~ 0.54, which is close to the Pokrovsky-Talapov value 0.5. The 
local magnetization x2 changes also continuously to its commensurate 
value. On the other hand, the change of the total magnetization Xo is 
discontinuous from nonzero value in the commensurate phase to zero in 
the incommensurate phase. 

The discontinuous drop of the total magnetization at T,., probably 
would be hardly observable in the experiment. The x/~ x x//-3 structure near 
the phase transition line is unstable to the formation of domains of 
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Fig. 5. Temperature dependence of inverse of the wavelength x~ (thick line) and of the local 
total magnetization .v, = [3/N Y', (~ Za, , t ,  . < a i i > ) ' ] "  (thin line) of the incommensurate 
structure for J2/Jl = 0.5 (T~/J l = 1.26, T2/J j = 2.33). 

oppos i te  sign of m a g n e t i z a t i o n  a l ready at weak d i s tu rbances  of the lattice. 
A s p o n t a n e o u s l y  formed d o m a i n  wall can appea r  on ly  in case of larger dis- 
tances be tween  impur i t ies  t h a n  the per iodici ty  of the i n c o m m e n s u r a t e  
s t ructure.  In  the latt ice with impur i t ies  the h igh - t empera tu re  c o m m e n s u r a t e  
and  the l ow- t empera tu re  i n c o m m e n s u r a t e  s t ruc tures  can  be on ly  hard ly  
dist inguished�9 We believe that  s imi lar  cons ide ra t ions  could  expla in  a 

Fig. 6. 

0 2  

O0  

- 0 2  

...... -.......% . o- ' '"  . . . . . .  "o~ ~ . ..,-'~176 ......... "~176 .......'"'" .... 

�9 :..- .~: -.-: 

~ ..... ~ ~ ~ .."" "o ". 

:~... ..." ... .....:':.... .. 
""..., ......... ...""" "'.....~ .......... ..."" " , . . . . ~ . . . . . . - "  

260 460 660 
n u m b e r  o f  r o w s  

Site magnetization m as a function of the row number at T/J~ = 2.326, J2/J, =0.5. 
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Fig. 7. 
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Phase diagram of the model for small magnetic fields, Jz/J~ = 0.5. 

continuous drop of magnetization in Monte Carlo calculations on an ideal 
lattice/8~ As mentioned above, our method does not describe directly the 
KT phase. The fluctuations of the wall distances should be included. But 
even this modification could not restore the nonzero magnetization at the 
high-temperature side of the I-C phase transition. A different situation is 
found for the incommensurate-disorder transition line. 

With increasing temperature the x/~ x x/~ domains get narrower and 
finally the space dependence of the magnetization acquires a wavy form 
(Fig. 6). The inverse of the period x~ increases and has a maximum slightly 
before the phase transition line. At the phase transition it drops abruptly 
to zero value of the paramagnetic structure. On the other hand, the order 
parameter x2 goes to the paramagnetic value (x2 = 0 )  continuously. The 
total magnetization Xo is equal to zero in the whole region of the incom- 
mensurate structure, but at the I -D phase transition line it is equal to zero 
also locally. Only the sublattice magnetizations are generally nonzero. The 
role of impurities should be much less than in the case of long wavelengths 
at low temperatures and in the experiment a discontinuous behavior should 
be clearly visible. 

At nonzero magnetic field the low-temperature domains with the 
magnetization opposite to the direction of the magnetic field are suppressed 
and a clean x/~ x x/~ structure is established. At higher temperatures the 
structure no longer has a domainlike character and the incommensurate 
structure persists also for relatively large magnetic fields (Fig. 7). (For 
comparison, the ferrimagnetic-paramagnetic phase transition at zero tem- 
perature occurs at h/J~ = 6.) According to symmetry considerations, cSj the 
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phase at nonzero magnetic field should not be in the critical state. In our 
approach, where the pair correlation functions decay with distance expo- 
nentially, there are no qualitative differences between the incommensurate 
structures in zero and nonzero magnetic fields. We believe that also in an 
experiment a small change of chemical potential would not dramatically 
change diffraction patterns of adsorbed monolayers with competing nn and 
nnn interactions. 
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